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Abstract

Research in robot control has generated interests in computationally
efficient forms of dynamic equations for multl-body systems. For a simply

connected open-loop linkage, dynamic equations arranged in recurslve form has
been found to be particularly efficient. A general computer program capable of
simulating open-loop manipulator with arbitrary number of links has been
developed based on an efficient recurslve form of Kane's dynamic equations.

Also included in the program is some of the important dynamics of the joint
drive system, i.e., the rotational effect of the motor rotors. Further
efficiency is achieved by the use of symbolic manipulation program to generate

the Fortran simulation program tailored for a specific manipulator based on
the parameter values given. This paper describes the formulations and the
validation of the program, and it also shows some results.

Introduction

In the development of a robotlc manipulator, simulation program can be an

important design tool. It can be used to support detailed mechanical design by
revealing the constraint forces and torques at different locations during
certain maneuvers. It can also be applied to test different control laws
without concerns of damaging the actual manipulators. If real time simulation

can be developed, training of telerobot operators and testing of actual
control hardware and software can become possible.

The success of a simulation in providing the useful and accurate
information depends on the model fidelity, the formulation of equations of
motion and the numerical solution of the equations. There is no such thing as
"the" simulation of a dynamical system because the fidelity of the model

determines what the results are llke. There is always room for higher fidelity
and so there is no end to it. But quite often, a modest increase of model
fidelity is accompanied by a significant increase in equation complexity and

numerical difficulty, and thus computation time. To achieve reasonable
efficiency in the computation, one has to investigate the merits of different
solution algorithms, different dynamical formulations and different levels of
model fidelity. Additionally, one has to validate that the program is

correctly representing the model.

M_ny researchers have worked on efficient formulations of dynamic
equations for robot manlpulators[2-9]. Most of them model robot as consisting
of rigid bodies connected together with revolute or translational joints.

Details of the joint drive systems have been mostly ignored. It is shown in
[7] that joint drive systems have potentially significant effects on robot
dynamics and hence should be included in the model. Also shown in [7] is a

procedure to obtain the dynamical equations of a robot with a speed-reductlon
drive system from the equations of a direct drive robot. This procedure will

be followed to develop a more comprehensive robot simulation program.



It has been known [2, S,6] that the important aspect of efficient

formulations is the recursive development of kinematic and dynamic quantities
to reduce the number of transformations among vector bases. It is also known
that recurslve Lagrange's formulation is still less efficient than the
recursive Newton-Euler*s formulations. However, Newton-Euler's formulation

will not be advantageous if more complicated model of the system is analyzed.
Since the program under development is anticipated to be expanded for more
comprehensive modeling of manipulator systems, Kane's method is chosen because

of its systematic features. An efficient formulation has been developed by
applying recurslve schemes in Kane's equations for a general manipulator
system. The forward and backward recurslons are established based on the
bounds on the summation signs in the equations.

If properly developed, it is expected that a customized simulation

program for a particular manipulator should be more efficient than a general
purpose simulation program. For the development of simulation program, there

is always a trade-off between generality and efficiency. But through the
application of symbolic manipulation to eliminate unnecessary computations
that occur for a particular model, it is possible to improve simultaneously
the generality and the efficiency of a simulation program. Symbolic
manipulation language MACSYHA has been used to develop a program called MSP

(Manipulator Simulation Program) for manipulators that are made up of a single
chain of any number of rigid bodies connected by revolute Joints. Gear

reduction effects of some simple joint drive systems are also efficiently
incorporated in the program following the procedure in [7].

Independent formulation and programming of the system kinetic energy and
the system angular momentum about a base-flxed point on the 1st Joint axis are
developed for validation purposes. Test cases which involve conservation of

these quantities have been selected to validate the simulation programs. The
objective of this paper is to present the formulation involved in the

development of this program. Computation efficiency and significance of gear
reduction effect are also to be discussed.

Mathematic Model

An open chain manipulator with N degrees of freedom as shown in Fig. I is
analyzed for the development of MSP. Each link is driven with a motor and a

gear reduction mechanism, an example of which Is shown in Fig. 2. The base is
considered fixed in the earth E (assumed to be an inertial reference frame}. _

Couples are generated at motors through electromagnetic interactions, and gear
reductions amplify the resulted moments on the links about the Joints. It is
assumed that the motor rotor and its rigidly attached part is the only massive
element in a joint drive system that will contribute to the modifications of

the equations of motion from that of a multlbody direct drive system.

The links are labeled consecutively B I to B m starting from the link

connected to the base. The base is referred to as llnk BO. The ideal revolute

joints between links are numbered such that Joint i connects llnk B. to llnk

Bi. I. An orthogonal unit vector basis xi, Xi and _i fixed in B. Is defined in
!

such a way that the unit vector _i (i = 1..... N) is directed along the axis

of joint i. A particular configuration called the null configuration of a

manipulator is one in which relative Joint angles between links are all equal

to zeros. The joint angles qi (I = I..... N) are positive when rlght-handed

rotation from the null configuration about _i occurs. In this paper, the motor

driving link B i is assumed to be mounted on llnk Bi.I and unit vector fij is

defined to be paralle) to the rotation axis of the motor rotor.
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Formulation of Dynamical Equation

The following presentation of the formulations will be in terms of
vectors and dyadics which are quantities independent of unit vector bases and

can be represented by column and square matrices, respectively, when expressed
in a particular basis.

Kane's dynamical equatlons[1] are

F"F + = 0 (r = 1..... N) (1)
r r

where F and F* are the generalized active and inertia forces associated with
r r

the r-th generalized speed, respectively. Since the system is holonomlc, the
number of generalized speeds are equal to the number of degrees of freedom.

Here the generalized speeds are chosen to be simply the derivatives of the
generalized coordinates. Assuming that the only contributing active forces are

the motor torques Tre r, the gravltatlonal forces and the external load on the

last link, represented by a force Fe acting through the mass center and a
torque !e, one can write

= + i_ I Mi(V. • G) + V__,r. Fe+ w • Te (r = I, ,N) (2)Fr _rTr - --1,r -- -- --N,r -- "'"

where _r is the gear ratio for the r-th joint, M i Is the mass of l-th link,

is the gravitational acceleration vector, and V. and _. are the r-th
_ler --l,r

partial velocity of B_, mass center of B i, and the r-th partial angular

velocity of B i, in E, respectively. The generalized inertia forces are due to

the inertia force and torque associated with each llnk, and they are
N N

. ^ ^

F =-i_IMi(Vi " a')-i_ _i, (_ -i -i -i - ) (r = I, N) (3)r -- ,r --I -I r" i" _'+ _.x I * _i "'''

where a. and _. are the acceleration of B. and the angular acceleration of B.
_I --1 ^ 1 I

in E, respectively, and _i is the central inertia dyadic of B i. Therefore,

the dynamic equations become
N N

^ ^

i_I Mi(V i • a.) + _ _. • (ii. _. + _.x ! " _ )
- -- ,r --I i-I -1,r - --I --I i i

N

= _rTr + i_1-Mi(G'- -Vi,r) + V-_,r" -Fe + _H, r" --Te (r : 1, ... ,N) (4)

From Fig. 1, we can obtain the followlng kinematic equations.
i

-Wi ---- j-_1 qj Zj

i
C

Vi ---- j-_1 gj(ZjX r_.ji)

-_i,r: Z i_r _r

Vi,r= (ZrX r c ) i-- -- --ri _r

where c-jlr'" is the position vector from Qj to B*I and

_ = { 1 if I -> r (i r = 1, ,N)0 if r> i ....

The angular and linear accelerations can be derived as
i

a. = _ q z. + _'. (I = 1 ..... N)
-I j-1 j --J -I

i

ai = j_l qj (ZjX rC.i) + a'. (i = 1 .... N)-- - -- --J -- I

(I = 1..... N) (5)

(I = 1..... N) (6)

(i = 1..... N) (7)

(i = 1 ..... N) (8)

(9)

(10)

(11)
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where
{

cx" = ¢_ _. x z_j) (12)-, j_1 j(-j

| Ed

i-1 . .E d

-- __;× ,-;,+ _._,×(_,× ,'_.,)+jz:,_qj__j×_-__r'j,) (i3)
and rL.. is the position vector from Qj to Q{. A left superscript on a time

--J I

differentiation symbol represents the reference frame in which the
differentiation is to be l_rformed[1]. With equations (5-13) substituted, the
equations o£ motion can be rewritten as

N

i_,-A;iqi=gTr- Tr (r = I.....N) C14)
where

A'.= z • f . (15)
r 1 _r --rl

N

f .= _1 ij • z_,+ M. rc. x (z.x r_..)] (i ->r) (16)--rl j i -- J --rj --1 --Ij

= z ._ (17)
r --r --r

M

-Tr = {i-_r[HiCKCi × ii) + T_]} - T e -(K_.x F"e) (18)

_. = a: - G_ (19)

^ £ (2O)
_T:, = -Ii" -I¢z: + __{x -_," _'-1

Because of symmetry, only upper triangular terms of matrix [Ar{] need to be

evaluated. The following formulations are used to evaluate the vector quantity
f
--ri "

_ - _ • . (i = l ... N) (21)fi i- ii z_, , ,

N
•" c re..1}

I i =j_i{ Ij + Hj[(r_cj)Z__- r_.{j -,J

L
Ii+1 + -_i + 2(P-'i(i÷1) r,;+1)_ _ _ Lr--i ( i+1 )r-';+ 1- * L= * P_.i+lr_.i (i+1)

(I = N-1 ..... 1) (22)
N

_, = _, + ",((r_.):__m,- "L _',] + (j-_i-,"j)((r_,,+,,)2=U- ,',(,.,)_,(,+,'r' ,]
(i = 1 ..... N) (23)

M

r =j_ Hj c-i -i Kij '
N

• c L

= ri+l + Hi -!1r'" + (j__i+lHj) P--i(i+l) (i = N-1 .... . 2) (24)

The dyadic quantity K i Is a constant in B i, l.e, if -_i is expressed in terms

of -,x" Yi' z-i basis, the coefficients are constants. Equations (22) and (24)

are backward recursive formulas that can be evaluated by establishing the

followlng:
^

_i.: __.+ ..( c_.)"_- ._. _,. ]
= i eJoN (25)

BJo.
where __ Is the Inertia dyadic of B N relative to QN" For the off-dlagonal

terms of [A .], a backward recursive formula involving r, i.e.,
rl
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--r,f "= f--(r+l)i + E (r÷l) x (Z--ix r_. ) ( r = i-1, ,' ) (27)

can be used with f-ii being the starting vector that should have been evaluated

from equation (21).

^

For T_r, the following forward recursive formulations can be used to

evaluate the necessary quantities.

_._, = __i.1 + _[iz_i (i = 1,...,N) (28)

(X'._l = _i-1+' q i (-_i x Z--i) (i = 1, ... , N) (29)
A

u. =ai-A i c L--, = " r-'ii = ui-1 + -_i-1" r--(i-1)i (l = 1 ..... N) (30)

where

=Ai = __'i x =U + (__i x _-U)'(w-x-, =U) (i = 1,...,N) (31)

The starting values for equations (28-30) are

-_o = 0 (32)
!

-_0 = 0 (33)

_0 = -G__ (34)

The introduction of dyadic quantity A i is to reduce the overall computation by

reusing it in two equations in the remaining formulations. The dyadic obtained
by cross multiplying a vector with a unit dyadic can be represented by a
skewsymmetric square matrix when it is expressed in a particular unit vector

basis. This skew symmetric square matrix is commonly encountered when a cross

multiplication of column matrices is replaced with a matrix multiplication.

The following backward recursive formulation can be used to evaluate the

kinetic quantities T.:
--1

N

_ • _ 1Mj) r L + M. c= r..] (i = N-l, ,1) (36)2i 2i.1 + _i [(j_i+ -i(i.l) , --,, "'"

^ r L )x Li + [ M. c EN rL. r.. + (j_i+lMj) _i(i+l)] x u.-i = _i+1 + --i(i+l _i+1 + 1 -ii --i

(i = N-1 ..... 1) (37)
where

-IL" = { A_'_ [Ei-- _ (Ei:U)_ U]}v (i = 1,...,N) (38)

and a subscript v next to a dyadic in equation (38) denotes the vector of the

dyadic, which is formed by summing the cross products of the prefactors and

the postfactors of all the dyads in the dyadic. The reason fop using the

expression in equation (38) is to reduce computation counts. In fact, Li can

be expressed in a form identical to equation (20). Conversely, equation (20)
can be replaced by

^ _(^TL = { A{" [i i- ii:U) UI} (i = 1 N) (39)--I -- -- -- V '''''

where the expression in brackets [ ] is the d_dic whose representation in a
particular unit vector basis is the inertia matrix with half its trace

subtracted from each diagonal element. The dyadic operations used above follow
the convention introduced by Gibbs[t0) in late eighteen hundreds.

are
The starting values for the recursive equations, equations (36) and (37),

r C
P_ = MN --AN" --NN

= M d,N×(_%-E'/MN)÷ L_.- T_°
(40)

(41)
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Equations (14) represent the equations of motion of a direct drive
open-chaln system. The modifications to equations (14) for an open-chaln

system with motors and gear reduction mechanisms shown in Fig. 2 are based on
the difference between generalized inertia forces contributing to these two

systems. The M are[7]

(F_) s = (F_)s, + G*r (r = I ..... N) (42)

where subscript s represents a manipulator system S which has a motor and gear
reduction mechanism in each llnk similar to that shown in Fig. 2, while

subscript s' represents the manipulator system S' which has the same mass and
inertia distribution as system S, but the motor rotors and gear reduction
mechanisms are considered to be fixed in the links on which them are mounted.
Here and throughout this paper, the motor driving i-th joint is assumed to be

mounted on link B{. 1 (i=1 ..... N). System S', therefore, represents a direct-

drive system. The difference terms between these two systems are

0 (r> I)

G* = t -_rJr(_rqr + _r-l" _r ) ( r = i ) (43)
r N

L
i_r+ 1-_iJi[ (_r" - qi(_i.1 x Zr )* ei ] ( r < i )

With the additional terms added, the dynamic equations for S become
N

- T * C (r = I ... N) (44)
{_1 Ari q{ = _rTr r r ' '

where

A .= A' + I _iJi(_r'_i) (if r ¢ i ) (45)

rl ri t _iJi2 (if r = I )

N

Gr = - _rJr S_-l"_r + i_r+l _iJiqi(_i-1 x _r)'_i (46)

It can be noticed that matrix [Ari] is still symmetric Hence, only those

difference terms in the upper triangle of matrix [Ar|] need to be evaluated

Symbolic Manipulation

Direct numerical approach in evaluating the above equations can be

inefficient if there are terms involving multiplication with 0 or 1, or
addition with O. The use of multl-dimensional arrays in a general purpose

program further reduces the computational efficiency. These are some of the
reasons why a general simulation program cannot achieve the highest possible
efficiency. Symbolic language such as MACSYMA can be applied to eliminate

these inefficiencies. Theoretically, one can use MACSYMA to derive equations
explicitly in terms of all joint angles and their derivatives and then to

reorganize the equations for efficient computation. But for a manipulator with
high number of degrees of freedom, this requires enormous memory space and CPU

time, and cannot be optimally simplified because the simplification is limited
by the capability of MACSYMA. It has been found that the recurslve formulation

as presented above is particularly advantageous because computation is already
optimized. Only simple symbolic operations need to be applied to generate the
recurslve equations of motion in FORTRAN coding, and hence the computer time

required for this process is not excessively long.

Program Valldation

Complete validation of a simulation program is next to impossible. But
without being subject to some forms of validation, a program cannot be
trusted. When a program is applied on a reasonably complicated system, one
cannot rely on simple statements llke "the results make sense" as validation.
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For a manipulator system with 3 or more links, intuition as to its motion when

subject to certain inputs does not work well at all. A more systematic

approach need to be adopted. This is a very important subject for the dynamic

simulation of robots, hut it does not seem to attract much attention. The

approach taken by the authors was to select some conditions under which the

system will have some scalar quantities, such as energy or measure numbers of

an angular momentum vector, that are conserved throughout the motion. Since

there exists a slight possibility that chance may cause errors not to be

detected, an independently developed program is used to evaluate the

validation quantities. Formulation of the system kinetic energy, potential

energy and the system angular momentum about a base-flxed point on the first

Joint axis for validation purposes will be described next followed by the
description of test cases chosen.

The kinetic energy formulation for a direct-drive manipulator S' is

N N

_ 1 i_ 1 j_l qi_[j (47)K' Z - - Aij

For a manipulator with gear reduction in its drive system, slight modification

is required. Consider two manipulator system S and S' as described before. If

they have the same motion, then the kinetic energies K and K' of systems S and
S', respectively, are related by[7]

N

1 2- "2 + //iJi_[i _0 •K = K' + i__1(_ //ioiqi -i-1 e{) (48)

The potential energy V of the system are due to gravity only, and it is
N

C

V = -i__1 M i C_ • £1i (49)

There is no difference between the potential energy expressions for S and S'

because they have the same mass distribution. The angular momentum vector H'

of a direct-drive manipulator S' about Q1 is
N

P EVP)
_H' = j-_l _. ['1 X imp _ (50)

J

where P Is a generic particle in Bj, _.repl?esent the summing over all the
J

particles in Bj, ['IP is the position vector from QI to P, and mp and EvP_ are,

respectively, the mass and the velocity in E of P. Only the measure number" of

_H' in z I direction is used in the validation process. Comparing the kinetic

energy formulation with that of H', one can obtain
N

_H'- Z_l = i__1 All c[i (51)

where All can be found in Eq. (15) with r = I. The angular momenta _H and _H'

about QI of systems S and S', respectively, are related by
N

_H = _H' + i__I //iJiqie_i (52)

Hence, equations (48-52) provide the necessary formulas for the evaluation of
the conservat ion quant it ies.

The validation cases used are

I. Conservation of total energy, K+V :

T = 0 (r = 1.....N)
r

II. Conservation of H • _I:

a. g = O, T I = O, _I = I, _I = _I

b. g _ 0, T 1 = 0, _1 = 1, _1 = K1 = ± _/g

where g is the gravitational constant.
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Under conditions described above, many simulation runs of manipulators

have been performed to validate the program. The results of these runs show
that numerical variations of the conservation quantities are of the order of

magnitude that is appropriately correlated to the absolute integration error
tolerances. Here integration subroutines using Adams-Bashforth-Moulton
predictor-corrector scheme and using Runge-Kutta-Verner method have been
separately applied for numerical integration.

Discussions

For a general manipulator the total numbers of operations to obtain A
' ri

(r, i = 1 N) in Eq. (14) for a direct drive manipulator areand _rTr- Tr .....

IIN(N-I)+ISO(N-I)-I5 multiplications and 7N(N-I)+II9(N-I)-I4 additions.
Table 1 lists the numbers of operations required for each of the equations in

the evaluation of matrix [A .] and T . The counting of operations follows that
V] V

presented in [6]. Notice that unit vector basis transformation has to be
performed in each recursion step. Here external force and torque applied on
the last link are not included. Therefore, for a general 6 link manipulator,

I07S multiplications and 791 additions are required. This is much lower than
the 1541 multiplications and 1196 additions needed in Method 3 of [2]. For the
six dof PUMA 600 presented in [9], Our MSP program generates FORTRAN code that

requires 351 multiplications and 281 additions to perform the computation that
takes 392 multiplications and 294 additions in [8].

Table 1. Number of Operations

equations multiplications additions
(22) 57(N-1)-33 3S(N-1)-25
(24) 8(N-1) 7(N-1)-3
(27) 11N(N-1)-8(N-1) 7N(N-1)-4(N-1)
(28) 8(N-I) 5(N-I)
(29) 10(N-1) 6(N-1)
(30) 17(N-1) 13(N-1)
(31) 6(N-1) 9(N-1)+1
(36) 17(N-1) 13(N-1)
(37) 20(N-1) 19(N-1)
(38) 15(N-1)+3 15(N-1)+1
(40) 9 6
(41) 6 5

Total 11N(N-1)+150(N-1)-15 7N(N-1)+119(N-1)-14

Adding qizi to the right hand side of equation (29), equations (28-41)

together with equation (17) become inverse dynamic formulation for a direct
drive robot. This inverse dynamic evaluation is similar to algorithm 3 in [6].
By applying MACSYMA to the formula, some unnecessary computations can be
removed. For instance, if N is 6, the number of computation for the
manipulator with twist angles equal to 0 ° or 90 ° is 340 multiplications and
290 additions compared to 388 multiplications and 370 additions in [6]. For

_ _ only nonzero element,the simpler manipulator with r_i and E_(i÷l ) having one

the numbers of computation are 245 multiplications and 204 additions compared
to 277 multiplications and 255 additions in [6]. The reductions are due to
some additional multiplications and additions with zero quantities that are
counted in [6] because the authors of [6] did not actually expand the

equations for the counting.

In order to give additional indication of efficiency, the 7 link Robot
Research Corporation [11] manipulator shown in Fig. 3 with parameters listed
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in the Appendix is considered. The numbers of operations for the system in the

form of Eq. (14) are 651 multiplications and 505 additions with effects of

motor rotors included. The numbers for direct-drlve system are S48

multiplications and 439 additions. Therefore, addln E the effects of motor

rotors requires 103 multiplications and 86 additions, which is about 17_ of

the total computation needed for the direct-drive system.

In the interest of demonstratin E the effect of motor rotors, a constant

motor torque (TI= 0.62S N-m) is applied on the first joint of the 7 link

manipulator shown in Fi E . 3. Two sets of equations are solved for comparison.

Set I is equation (14), which represents the direct drive system S' and set 2

is equation (44), which is the complete equations of system S. The results

from set I are shown in Figs. 4 and 5 while those from set 2 are in Figs. 6
and 7. The differences of the results are so substantial that it is clear that

set 1 is not representative of the actual system.

Amon E all the additional terms due to motor rotor, the terms _Jiqi.

(i=l ..... N) are most significant due to the large values of _i" Another set

of equations, set 3, established by adding only _iJi2 to diagonal elements

A.. of [A'.] matrix in equations (14) is also solved for comparison. A
]! r!

sinusoidal motor torque (TI= 3.12S cos 0.8_t kg-m) is applied on the first

joint of the manipulator. Some of the results from set 2 are shown in Fig. 8
while the differences of the results between set 2 and set 3 are shown in

Fi E . 9. It is clear that the differences are relatively small in the duration
of S seconds.

J7

J6/J7

_K

J5 J " _,t J3 J2

__'_z @

Fig. 3. A7LinkManipulator
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Conclusions

The initial development of an efficient simulation program for
telerobotic manipulators is described. An efficient recursive formulation of
Kane's dynamic equations for a class of manipulators which are made up of
links connected with revolute joints and driven by motors with reduction

mechanisms is presented. The recursions are established according to the
summation bounds in the equations. Comparison of operation counts with other

published formalisms shows advantages of the present approach. Furthermore,
effects of rotor inertia and speed reduction are included in the formulation

to yield a more faithful model of the actual system. Symbolic manipulation is
also applied to generate customized simulation program for additional
improvement of the computational efficiency. Aside from the discussions on
efficiency, steps taken to validate the simulation program are presented.
Finally, simulation results show that effects of rotors in drive system with

high speed reduction cannot be ignored in the simulation of a manipulator.
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Fig. 4. Solution of Equations Set 1
(joints 1-3)
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Appendix

The parameters of a 7 link Robot Research Corporation manipulator used in the
simulation from which results are presented in this paper are in the

following.

Mass (including motor and speed reduction mechanism): (kg)

link 1 2 I 3 4 5 6 7 1

mass 104.2 5S.4 I 28.8 20.4 II.I 4.7 4.7 I

Moment of inertia (including motor and speed reduction mechanism): (kg-m 2)

link 1
link 2
link 3

link 4
link S
link 6
link 7

Ixx

2.05
0.4
0.6
0.2
0.1
O. 03
O. 03

Iyy
2.05
0.4
0.6
0.2

0.1
O. 03
O. 03

Izz

0.7
0.3
0.2
0.2
O. 04
O. 03
O. 03

Speed reduction ratio, rotor inertia (including attachment) and rotor axis (in
link fixed unit vector basis):

base
link 1
link 2
link 3
link 4
link S
link6

speed ratio

160

160
200

200
200
2O0

160

rotor inertia
(kg-m _ }
0,003
0.003
0.0003
0.0003
0.0002
0.0002

O.OO02

rotor _ts

[0,0, I]
[1,0,1]
[o,i,o]
[1, o,o]
[o, 1, o]
[i,o,o]
[o,i,o]

¢ i=1, , 7 :Joint to mass center position vector (m) rii ....

X Y
link 1 0 0
link2 0 0
link 3 0 0
link 4 0 0
llnk 5 0 0
llnk 6 0 0
link 7 0 0

Z

0
0
0

0
0
0

0

Joint to joint position vector (m) r L i=l, 6 :i(i+1) ' "'''

X Y Z

llnk 1
link 2
link 3
link 4
link 5
link6

0.0 0.0 0.5
0.3 0.1 0.0
0.1 0.0 0.3
0.3 -0.1 0.0
0.08 0.0 0.4
0.19 -0.08 0.0
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